
Lecture 12:
Shear stresses in beams
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Shear stress in beams

We’ve seen that if a beam is in pure 
bending, the only stresses that act on the 
cross section are normal stresses
In non-uniform bending, we will have normal 
stresses and shear stresses
Assume two identical beams in bending. 
Under load, one beam will slide over the 
other. The force that is required to prevent 
this sliding is the longitudinal shear force. 
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Shear stress in beams

For the case of a rectangular cross-section we 
can assume:

• Shear stresses that act on a cross 
section are evenly distributed from one 
side to the other and act vertically

• Shear stresses acting on one side are 
accompanied by shear stresses of 
equal magnitude on a perpendicular 
face

• Therefore we will have vertical AND 
horizontal shear stresses

First result: at the top and at the bottom of the
beam, the horizontal shear stresses are zero.
Therefore also the vertical shear stresses are
zero.
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Shear stress in beams

§ Assume a beam in non-uniform bending
and take two vertical cross-sections a
distance dx apart.

§ Since we have non-uniform bending, we
have both normal stresses and shear
stresses.

§ We want to find an expression that
relates external forces to shear stresses

§ Our approach:
• Use the fact that shear stresses act

both normal to the beam axis as well as
parallel to the beam axis

• Use the expression for normal stresses
(flexure formula) to calculate force-
equilibrium in the longitudinal direction
in the presence of a moment gradient.
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Shear stress in beams
5

• We calculate the normal stresses on each
cross-section of the element using the
flexure formula

• The stresses vary linearly with y, being zero
at y=0

• We know that shear stresses are stresses
that occur between two sides of a cross-
section. We make a horizontal cut through
the element to look at the sub-element
mm1pp1.

• Calculate the forces acting on the sub-
element in the x-direction.



Shear stress in beams
• If the bending is uniform, then there is no 

difference in moment on the face mp and 
the face m1p1. Therefore the normal 
forces cancel each other out.

• In non-uniform bending, there is a non-
zero dM between the two cut planes. 

• This means that σ1≠σ2. Which results in a 
force difference on the two faces.
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Shear stress in beams
• We calculate the forces acting on the faces

mp and m1p1 by integrating over the cross-
sectional area of the sub-element.

• Since we are interested in the shear force at
a specific value for y=y1, we calculate the
integral over the area of b*y1 to b*h/2

• Due to the need for equilibrium in the x-
direction, the difference between the two
forces at the two sides of the sub-element
has to be compensated by an additional
longitudinal force, which is the shear force
between two horizontal slices through the
beam.
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Shear stress in beams 8

§ From the in-plane shear force we can then calculate the 
shear stress and find the shear formula: 

§ with Q being the first moment of area:

§ The last thing we need to do to describe the shear stress 
distribution in the beam is to calculate Q.

⌧ =
V ·Q
I · b

Q :=

Z

A
y · dA



Shear stress in beams 9

§ For a beam with a rectangular cross-
section, we can calculate Q(y1) by
calculating the area from y1 up to h/2

§ We could also calculate the area from y1
downward, and would bet –Q

§ We can easily show that at y1=0, Q is
maximum and at y1=+/- h/2, Q=0

§ Through integration and combination
with the shear formula we get:

⌧(y) =
V

2I

✓
h2

4
� y2
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Shear stress in beams 10

We see now:
§ shear stress varies quadratically with the distance from the 

neutral axis
§ shear stress is zero at the beams upper and lower surfaces
§ the shear stress is maximum at its neutral axis: 

§ the maximum shear stress is 50% higher than the average 
shear stress

⌧(y) =
V

2I

✓
h2

4
� y2

◆

⌧max =
V h2
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Validity of the shear formula
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It is important to use the formula only in cases where these assumptions are 
justified:

Edges of the cross-section must be 
parallel to the y axis

The shear stresses must be uniform 
across the width of the cross-section

The beam must be prismatic (e.g. 
must have a constant cross-section). 

The formula is not correct for a tapered 
beam.

During the derivation of the shear (and flexure) formula we have made a 
number of assumptions to make the derivation easier.



Effect of shear stress 12

§ The shear stress distribution in the beam cross section is quadratic in the 
plane of bending.

§ From Hooke’s law in shear we know:
§ Therefore also the shear strains are not constant along the cross-section. This 

means that plane cross-sections that were initially normal to the beam axis, 
will no longer be plane after bending!

� =
⌧

G
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13Calculating shear and 
moment diagrams

Check Check if your diagram matches with what you know 
about the support

Draw Draw the shear and moment diagram below the FBD

Make Make a section through the beam and calculate V(x) 
and M(x) for that section

Calculate calculate reaction forces

Draw Draw free body diagram



Lecture 12:
Beam deflection

• Applications in nanotechnology
• Governing differential equations
• Solving beam deflection through 

integration
• Solving beam deflection through 

superposition
• Statically indeterminate beam 

deflection
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AFM-a versatile tool for 
nanoscale biology

15

§ Single molecule resolution

§ High resolution imaging in aqueous solution

§ Imaging of living cells

§ Single molecule mechanics

§ Can be combined with optical microscopy



Cantilever

Laser

Cantilever

Surface

Photodetector

AFM: a Versatile Tool for 
Nanoscale Measurements

conductivity, surface potential, electrochemical potential, 
ion currents, magnetism, NMR….and many more

T. 
Eguchi 
et al.

4.2nm



Single Molecule 
Force Spectroscopy
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Force resolution: 10s of pN; limited by thermal motion of the cantilever



AFM cantilever beam 18

§ In order to measure very fine features, the cantilever 
probe needs to be very sharp and sensitive

§ The deflection of the cantilever has to be measured very 
precisely

§ Two methods are often used:
• Optical beam deflection
• Piezoelectric strain sensing

The gate to the nanoworld



Beam bending
• We bend the cantilever beam by applying 

a load at the end
• w(x) describes the amount of deflection 

of the point on the cantilever from the 
zero axis

• Two points are a distance ds apart from 
each-other on the bent beam

• From this we can get a relationship that 
describes the curvature of the beam

q

w

m1
m2

w w+dw

dx

ds

m1
m2

ds

ρdθ

θ θ+dθ

dθ
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Beam bending -
Governing equation

We want to find a relationship 
between the beam deflection at a 
point x on the beam as a function of 
the load
We find 4 differential equations that 
relate loads to the deflection and the 
angle
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dw

dx
= �✓ (1)

d2w

dx2
= �M(x)

EI
(2)

d3w

dx3
= �V (x)

EI
(3)

d4w

dx4
=

q(x)

EI
(4)

dw

dx
= �✓ (1)

d2w

dx2
= �M(x)

EI
(2)

d3w

dx3
= �V (x)

EI
(3)

d4w

dx4
=

q(x)

EI
(4)



Beam bending-Boundary 
condition
To solve for the beam bending equation through
integration, we need boundary conditions
The type of support of the beam at its end
determines the internal forces and moments at
the ends, as well as its geometry

We have therefore two types of boundary
conditions:

• Static boundary conditions: These come 
from static equilibrium and pertain to 
force related quantities (V,M)

• Kinematic boundary conditions: these 
define the deformational and geometric 
constraints for the angle and the 
bending
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Beam bending - Abrupt 
changes

22

§ When we have mathematical discontinuities due to an abrupt change in load 
or stiffness, we supplement our boundary conditions with the physical 
requirement that the neutral axis must be continuous!

§ Deflection and tangent needs to be the same coming from both sides of the 
point of discontinuity:

lim
x"a

w(a) = lim
x#a

w(a)

lim
x"a

w0(a) = lim
x#a

w0(a)



Beam deflection 23

§ If we want to solve beam equation through integration, we need to integrate 4 
times:

§ We know already that:

§ Therefore:
• We get C1 and C2 from the boundary conditions of M(x) and V(x)
• We get C3 from the boundary condition of the angle of deflection and C4 from the 

boundary condition of w

§ Solving through integration

Z
EIw0000(x)dx =

Z
q(x)dx

EIw(x) =

Z Z Z Z
q(x)dx+

1

6
C1x

3 +
1

2
C2x

2 + C3x+ C4

V = �
Z

q(x)dx+ C1 M = �
Z

q(x)dx+ C1x+ C2



Beam deflection –
Solving through 
superposition
• As long as the beams behave linearly elastic, we are 

dealing with linear differential equations.

• For such a situation, we can separate a difficult load 
profile into simpler sub parts:

• We can then do the integrations over the individual qi
separately.

• To find the solution for the deflection due to the 
complex load profile, we can just sum up the 
deflections caused by the sub-loads qi.

• We can tabulate the deflection formulas due to 
standard loads.
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Statically indeterminate 
beams –
Solving through integration
Often beams are supported more 
that absolutely required for static 
equilibrium.
A cantilever that is supported also on 
it’s unmounted end is considered a 
“proper cantilever”
We treat over constrained beams in 
bending just like normal beams. The 
static indeterminacy is solved 
automatically through the use of the 
boundary conditions to calculate the 
integration constants. 
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Example:
Statically indeterminate 
beams
§ Solve the following statically 

indeterminate system through 
integration of the beam deflection 
differential equations. Calculate: 
• deflection
• shear forces
• bending moments
• slopes

§ Approach:
• Set up load equation q(x)
• Integrate the differential equations
• Solve for the reaction forces using the 

boundary conditions
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