Lecture 12:
Shear stresses in heams

"You have clearly been under enormous stress."
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Shear stress in beams

We've seen that if a beam is in pure
bending, the only stresses that act on the
cross section are normal stresses

In non-uniform bending, we will have normal
stresses and shear stresses

Assume two identical beams in bending.
Under load, one beam will slide over the
other. The force that is required to prevent
this sliding is the longitudinal shear force.
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Shear stress in beams

For the case of a rectangular cross-section we
can assume:

Shear stresses that act on a cross
section are evenly distributed from one
side to the other and act vertically

Shear stresses acting on one side are
accompanied by shear stresses of
equal magnitude on a perpendicular
face

Therefore we will have vertical AND
horizontal shear stresses

First result: at the top and at the bottom of the
beam, the horizontal shear stresses are zero.
Therefore also the vertical shear stresses are
Zero.
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Side view of beam

Side view of element

Shear stress in beams

Assume a beam in non-uniform bending
and take two vertical cross-sections a
distance dx apart.

Since we have non-uniform bending, we
have both normal stresses and shear
stresses.

We want to find an expression that
relates external forces to shear stresses

Our approach:

Use the fact that shear stresses act
both normal to the beam axis as well as
parallel to the beam axis

Use the expression for normal stresses
(flexure formula) to calculate force-
equilibrium in the longitudinal direction
in the presence of a moment gradient.
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Shear stress in beams
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~ip " vl 2 We calculate the normal stresses on each
e > F— cross-section of the element using the
| h flexure formula

4
A— TR — . 'all'{\i:s(,)tresses vary linearly with y, being zero

Side view of element We know that shear stresses are stresses
that occur between two sides of a cross-

section. We make a horizontal cut through
§ the element to look at the sub-element
/2 |h mm,pp;.

Calculate the forces acting on the sub-
element in the x-direction.

|/l

Side view of subelement
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Shear stress in beams
& ": :——" M+ dMih
C b > If the bending is uniform, then there is no
;}. B\ h difference in moment on the face mp and
T N '-‘ the face m4p4. Therefore the normal
® 1111311 forces cancel each other out.
it In non-uniform bending, there is a non-
my zero dM between the two cut planes.
N} /7 | This means that 6,#0,. Which results in a
P P

force difference on the two faces.

Side view of subelement
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Shear stress in beams

dA

h | all] ! We calculate the forces acting on the faces

Y B % ¥ . 0

=3 mp and m,p, by integrating over the cross-
- sectional area of the sub-element.

h

> Since we are interested in the shear force at
: a specific value for y=y,, we calculate the

integral over the area of b*y, to b*h/2

Cross section of beam at subelement Due to the need for equilibrium in the x-
direction, the difference between the two
forces at the two sides of the sub-element
has to be compensated by an additional
longitudinal force, which is the shear force
between two horizontal slices through the
beam.
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= From the in-plane shear force we can then calculate the
shear stress and find the shear formula:

_V-e

T —=
I-b
= with Q being the first moment of area:
Q = / y-dA
A

= The last thing we need to do to describe the shear stress
distribution in the beam is to calculate Q.
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= For a beam with a rectangular cross- : dA
section, we can calculate Q(y;) by ; 7
calculating the area from y; up to h/2 I 8-

= We could also calculate the area from y; . ' ,? P

downward, and would bet —Q h

= We can easily show that at y,=0, Q is >
maximum and at y,=+/- h/2, Q=0

- ’) -

- Through integration and combination Cross section of beam at subelement
with the shear formula we get:

T(y) = % (h; - y2>




=PFL  Shear stress in beams

vV (B2,
W) =5 (z Y )
We see now:

= shear stress varies quadratically with the distance from the
neutral axis

= shear stress is zero at the beams upper and lower surfaces
= the shear stress is maximum at its neutral axis:

Vh? 3V

8 24
= the maximum shear stress is 50% higher than the average
shear stress

Tmaaz -

10
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Validity of the shear formula

During the derivation of the shear (and flexure) formula we have made a
number of assumptions to make the derivation easier.

It is important to use the formula only in cases where these assumptions are

justified:
The beam must be prismatic (e.g.
Edges of the cross-section must be The shear stresses must be uniform must have a constant cross-section).
parallel to the y axis across the width of the cross-section =~ The formula is not correct for a tapered

beam.

-
[

Georg Fantner



12

£PFL  Effect of shear stress

= The shear stress distribution in the beam cross section is quadratic in the

plane of bending. -

= From Hooke’s law in shear we know: 7 = &

= Therefore also the shear strains are not constant along the cross-section. This
means that plane cross-sections that were initially normal to the beam axis,
will no longer be plane after bending!
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Calculating shear and
moment diagrams

Draw free body diagram

Ca|cu|ate calculate reaction forces

Make a section through the beam and calculate V(x)
and M(x) for that section

Draw the shear and moment diagram below the FBD

Check if your diagram matches with what you know
about the support

-
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Lecture 12:

Applications in nanotechnology
Governing differential equations

Solving beam deflection through
integration

Solving beam deflection through
superposition

Statically indeterminate beam
deflection

14
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AFM-a versatile tool for
nanoscale biology

= Single molecule resolution

= High resolution imaging in aqueous solution
= Imaging of living cells

= Single molecule mechanics

= Can be combined with optical microscopy

15



=PFL  AFM: a Versatile Tool for
Nanoscale Measurements

Surface

Cantilever

conductivity, surface potential, electrochemical potential,
ion currents, magnetism, NMR....and many more



=rL - Single Molecule
Force Spectroscopy

200
Distance / nm

Force resolution: 10s of pN; limited by thermal motion of the cantilever
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The gate to the nanoworld

= In order to measure very fine features, the cantilever
probe needs to be very sharp and sensitive

= The deflection of the cantilever has to be measured very
precisely

= Two methods are often used:

» Optical beam deflection
 Piezoelectric strain sensing

Optical sensing Piezoresistive sensing
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Beam bending

Georg Fantner

q
l = We bend the cantilever beam by applying
| W edw a load at the end

m3 w(x) describes the amount of deflection
of the point on the cantilever from the
_ zero axis

Mildsae Two points are a distance ds apart from
each-other on the bent beam

"9 P From this we can get a relationship that
describes the curvature of the beam
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Beam bending -
Governing equation

We want to find a relationship
between the beam deflection at a
point x on the beam as a function of
the load

We find 4 differential equations that
relate loads to the deflection and the
angle
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} » X ll > x
a —»da
z zZv
w(a) =0 wia) =0
B(a) = -wl(a) =0 M(a) = -Elw"(a) = 0
(a) Fixed (b) Simple
4,
[ 1y x iﬁ Ly x
.. A
zZy zZv

M(a) = ~Elw"(a) = 0 8(a) = -w'a) =0
Via) = -EIw""(a) =0 WVla) = -Elw" '(a) = 0

(c) Free (d) Guided

Beam bending-Boundary
condition

To solve for the beam bending equation through
integration, we need boundary conditions

The type of support of the beam at its end
determines the internal forces and moments at
the ends, as well as its geometry

We have therefore two types of boundary
conditions:

These come
from static equilibrium and pertain to
force related quantities (V,M)

these
define the deformational and geometric
constraints for the angle and the
bending
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Beam bending - Abrupt
changes

= When we have mathematical discontinuities due to an abrupt change in load

or stiffness, we supplement our boundary conditions with the physical
requirement that the neutral axis must be continuous!

= Deflection and tangent needs to be the same coming from both sides of the
point of discontinuity:

Iimw(a) = limw(a
lim (a) lim (a)

limw'(a) = limw’(a
lim (a) lim (a)

22
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cPFL - Beam deflection

= Solving through integration

= [f we want to solve beam equation through integration, we need to integrate 4

times:
/Elw"”(:v)dx = /q(a:)dx

1 1
Elw(z) = ////q(a:)da: + 601953 + §CQ:UZ + Csx + Cy

= WWe know already that:

V:—/q(g;)daj—l—Cl M:—/q(x)da:+01m—|—02

= Therefore:
* We get C1 and C2 from the boundary conditions of M(x) and V(x)

« We get C3 from the boundary condition of the angle of deflection and C4 from the
boundary condition of w



EPFL Beam deflection -
W R Solving through
" superposition

Pa’ [x] x]’l.
P w(x)=——[3|—| —|— 0<x<a
l 6E]| \a a |
- As long as the beams behave linearly elastic, we are
SR N a 0 . . . . .
— s W)= 3[%]—1 a<x<lL dealing with linear differential equations.

For such a situation, we can separate a difficult load
profile into simpler sub parts:

q(z) = q1(z) + g2(z) + . ...

We can then do the integrations over the individual g;
separately.

Ll |l
To find the solution for the deflection due to the
% complex load profile, we can just sum up the
‘é gl 1 daY. eV deflections caused by the sub-loads q;.
w(x)=—"— 20[2] -10 —] +|=
P

120E]| w(x) _ Z wi (x)

We can tabulate the deflection formulas due to
standard loads.
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Statically indeterminate
beams -
Solving through integration

Often beams are supported more

that absolutely required for static
equilibrium.

A cantilever that is supported also on
it's unmounted end is considered a

We treat over constrained beams in
bending just like normal beams. The
static indeterminacy is solved
automatically through the use of the
boundary conditions to calculate the
integration constants.
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Statically indeterminate

beams

= Solve the following statically
indeterminate system through

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ integration of the beam deflection

differential equations. Calculate:
L » deflection

shear forces

bending moments

slopes

= Approach:
Set up load equation q(x)
Integrate the differential equations

Solve for the reaction forces using the
boundary conditions




